

Instruments

EX1200 series

HIGH-DENSITY SWITCHING AND DATA ACQUISITION SYSTEMS

SCALABLE

HIGH-DENSITY

PERFORMANCE GRADE

COST-EFFECTIVE

SET UP AND RUN

20+ YEARS OF INDUSTRY LEADERSHIP

vti is at the core of virtually every major ate tester

VTI's signal switch/measure and control components are employed worldwide in a broad spectrum of applications for aerospace, defense, telecommunications, test and measurement, contract manufacturing, automotive, medical, and commercial functional test.

VTI presides over the VXIbus consortium, co-founded the LXI standard, and is an active member of many other consortiums that drive test and measurement industry standards. Our commitment to long-term open-platform standards has enabled system integrators to develop common ATE systems that are not impacted by the effects of obsolescence using standard products that are designed to maintain active production status in excess of 15 years.

The EX1200 is our next generation family that leverages our reputation for delivering innovative, modular high-density designs with common hardware and software architectures that can be leveraged throughout the life cycle of a product.

Leading Supplier of Data Acquisition
Hardware and Software

Industry leading data acquisition and precision instrumentation provider
GLOBALLY RANKED 6TH BY FROST \& SULLIVAN
WORLDWIDE SALES, SERVICE \& SUPPORT

Design and Deliver Precision
Modular Instrumentation and Modular Instrumentation and
Data Acquisition Systems

ELECTRONIC TEST
EMBEDDED ELECTRONIC APPLICATIONS MECHANICAL / ENVIRONMENTAL MONITORING \& TEST

Serve High Reliability Markets Where Measurement

Performance is Critical

MILITARY / AEROSPACE

energy / power generation
HIGH-END CONSUMER GOODS AND MEDICAL DEVICES

LXI - The T\&M Standard for Ethernet

LXI EXTENDED FUNCTIONS

In 2005, VTI cofounded LXI*, an industry standard for Ethernet-based test instrumentation, and is also the industry leader in open platform switching solutions. LXI stands for LAN eXtension for Instrumentation. It extends on traditional LAN, adding instrument interoperability requirements, timing and synchronization options, and enhanced performance, that makes it ideal as an instrumentation platform

The EX1200 family incorporates LXI core technology as well as optional extended function capabilities, to take full advantage of the benefits the specification offers. The EX1200 family's powerful synchronization and triggering capabilities provide the confidence that it can be integrated within any LXI, GPIB, PXI or VXI hybrid system

- Distributed switching and measurement systems over LAN
- Synchronized measurement data to IEEE 1588 precision
- Highly deterministic hardware-based triggering using the LXI Wired Trigger Bus
- Protection against PC bus obsolescence
- Assurance of multi-vendor instrument interoperability
- Scalable solutions that optimize rack space
- LAN eXtensions for Instrumentation

OVERVIEW

The EXI 200 product family is a modular and scalable series of multifunction switch/measure units that can be configured to address a variety of applications in the mechanical data acquisition and electronic test environments.
this family contains the following core components:

MAINFRAMES

plug-In CARDS
ACCESSORIES and connectivity

Plug-in Cards

- general purpose and multiplexer

SWITCHING $300 \mathrm{~V}, 3$ A
COMPARATOR/THRESHOLD

- power switching up to 16 A

RF/microwave switching

- SOURCES / TACHOMETER / COUNTERS
- rtd simulator - digital I/O
nerninnurns
Mainframes
- PROVIDING POWER TO the plugin cards
analog bus for routing measurements FROM PLUGIN CARDS TO DMM

Slots for inserting plug-in
cards for specific functionality

LXI wired trigger bus for
precision synchronization
with other instruments.
a shared communication bus AND SYSTEM CLOCK

5-lane analog bus capable of routing signals up to $300 \mathrm{~V}, 3 \mathrm{~A}$ internally to the DMM for measurement.

- Optional 6.5 digit DMM capable of
measuring $\mathrm{DCV}, \mathrm{ACV}, \mathrm{DCl}, \mathrm{ACl}$ $2 \mathrm{~W} \Omega, 4 \mathrm{~W} \Omega$, temperature transducers and frequency.

Robust I/O Interface

- connectivity options give users convenient and easy methods to connect the il to the instrument

LXI interface allows users to control instrument and acquire data using Ethernet

A Single, Modular, Scalable Solution

High-Density Switching and Data Acquisition Systems

APPLICATIONS

- High-performance switching for ATE, DC to 26.5 GHz
- Power supply switching
- Temperature monitoring (RTD thermocouple, thermistor)
- Automotive ECM testing
- High voltage monitor
- Data logging applications
- Cable/harness testing
- Battery test
- RTD/sensor simulation
- White Goods Testing

HIGHLIGHTS

- Modular, scalable architecture in half and full rack $1 \cup, 3 U$ and $8 U$ versions provides low cost-per-channel across a wide range of channel count
- Small footprint for switching/scanning applications with up to 5762 -wire channels in 10
- Optional EXLab "Set Up and Run" software simplifies data acauisition and analysis
- Measurement support for all thermocouple types, RTDs, and thermistors with built-in cold junction compensation
- Scan list architecture, tightly synchronized with internal 6.5 digit DMM increases test throughput
- Analog and digital plug-in modules provide control capability of external device
- Multiple callibration sets yield more accurate data across temperature range (up to eight per module)
- LXI communication interface eliminates platform obsolescence and support cost concerns
- Tightly synchronized measurements in a distributed architecture using IEEE 1588
- Highly deterministic handshaking using the LXI Wired Trigger Bus
- Web-based access for monitoring and control of devices, from anywhere in the world. using any web-enabled device

Data Acquisition

switch/measure and control for data acquisition
When installed with the optional 6.5 digit DMM, the Ex1200 family can be configured as a cost-effective, high-density, scanning measurement and control instrument capable of acquiring data from thermocouples, RTDs, thermistors, and voltage/current sensors at rates up to 1000 samples per second.

Plug-in switch/multiplexer modules are used to expand the number of channels that can be scanned in a single system. Additional plug-in modules extend the capabilities of this instrument for data acquisition by adding precision analog and digital outputs for controlling external devices, as well source/fach for measurements on rotating machinery.

MEASUREMENT CAPABILITY

terminal blocks
Terminal blocks provide wired cable assemblies with screw terminal breakout points that allow users to probe connections between instruments.

EXLab

SET UP AND RUN
The EX1200 series is supported by the popular EXLab turn-key software package. The EXLab's intuitive GUI significantly shortens time-consuming test setup and configuration. Test engineers can begin monitoring recording, and analyzing data within minutes.

With EXLab and the EXI 200 family, engineers can design a mixed-signal distributed measurement system that includes voltage, thermocouple, RTD, and digital inputs.

- Wide range of graphical displays to generate customized views of multiple channels
- Simultaneously Record and store time-stamped data in open data formats
- Easy instrument discovery and connectivity on startup
- Save and import configurations for repeat tests
- Easily configure alarms and triggers
- Simplified options for timing and synchronization
- Self-calibration routines accessible in software
- Calculated and virtual channels supported

EASY-TO-USE GRAPHICAL CONTROL

The EX1200 series is delivered with an embedded web interface that provides virtual monitoring and control of all switches and instruments without the need for any third-party software.

The web interface is accessible from any web-enabled device, including smart phones and tablets, and provides easy to use tools for test sequencing and scanning. Power on your instrument and start taking data in less than a

0.561046 k 2W		5
	-	

buILt-IN TEST SEQUENCING
A powerful embedded application dedicated to scanning measurement and control is provided. Each measurement channel can be configured independently with pass/fail limits that can be evaluated on the fly.

Stimulus and switch settings can be modified as part of the test sequence and input channels can be measured to verify how they respond to these changes. This robust utility minimizes processor overhead and test execution time.

ATE Solutions

ATE Solution

160 mm

Dual 4×8; 64 two-wire crosspoints 25 MHz bandwidth
high density switching, instrumentation and i/o

The EX1200 family is the highest density switch and I/O instrument on the market with the ability to mix low-level, power, and
RF switch modules in a single mainframe.
This scalable family of products is designed to leverage capital investments in one common hardware and software platform that can be used in development, manufacturing, and field service.

Mix and match a variety of modules to build a comprehensive signal switching subsystem that can be supplemented with precision analog and digital I/O modules.

XI-BASED EX 1200-4003 2 A MATRIX

DON'T COMPROMISE DENSITY
FOR PERFORMANCE
Typical switch cards that conform to the 34 Eurocard footprint (e.g. PXI) have a limited amount of available working space and manufacturers are often forced to make design tradeoffs between density and performance

To achieve higher channel counts on a PXI card, smaller relays are tightly packed on a switch module. This puts signal carrying traces closer to one another and limits the channel-to-channel crosstalk immunity as well as current carrying capacity.

EXI200 series switching modules offer nearly double the available working space and increased channel count capacity to ensure the highest degree of signal integrity in the same vertical footprint as PXI. For lower density switching applications. VTI also offers a comprehensive family of performance PXI Express switch modules.
treating the signal switch in ate as an instrument
A key factor that differentiates VTI Instruments from competitors is that we view signal switching subsystems as precision instruments and not just a collection of relays on a card. The quality of a switch is not determined by what it does, rather by what it doesn't do; the ideal switch instruments transmit signals exactly as they come in, without attenuating, adding noise, or reducing signal integrity in any way.

With years of experience in designing precision switch instruments and a widespread install-base in virtually every major ATE system world-wide, VTI Instruments has proven that, when it comes to signal transparency, the performance offered by our switch cards is unmatched.

WHY INVEST IN A 6.5 DIGIT DMM WHEN 1.5 DIGITS CAN BE LOST IN SWITCH NOISE?

TYPICAL PC-SWITCH CARD

- - 60 dB crosstalk @ 100 kHz
- 1 V aggressor adds 1 mV of noise to 10 V signal
- $>30 x$ error when compared to
higher integrity switch card
1.5 digits are lost off a measurement
instrument due to the crosstalk

TYPICAL VTI SWITCH CARD

- -90 dB crosstalk @ 100 kHz
- IV aggressor adds only $31.6 \mu \mathrm{~V}$ noise to 10 V signal
- Maximize full range of measurement instrument capability

Open Software - Expedite System Readiness

the most significant investment of any automated test
Project resides in the system software. vti's commitment TO DELVERING OPEN ARChtIECTURE SOLUTIONS Extends to software utluties and tools that reduce development time whlle maximizing the flexibluty to choose the application development environment.
flexible application programming options
Every Ex 1200 series module is delivered with an application programming interface (AP) that conforms to industry standard IVI specifications.

The IVI drivers can be used directly in the most common application development environments such as LabVIEWTM, LabWindows/CVITM C++ and Visual Basic. The EX1200 drivers allow a programmer to

- Achieve faster development time through system wide path-level programming
- Plan routine maintenance by automatically tracking relay closures
- Precisely synchronize distributed measurements through IEEE 1588
- Use the LXI Wired Trigger Bus for highly deterministic hardware handshaking
- Auto-instrument discovery using NI-MAXTM and Agilent Connection Expert ${ }^{\text {M }}$
operating system independence
VTI's innovative approach to driver development provides system developers with true OS independence without sacrificing the convenience that instrument drivers deliver.

An IVI-like API can be imported into Linux® and other operating systems. The intuitive APIs simplify programming, making low-level coding unnecessary to access the full capability of the instrument.

BUILT-IN PATH-LEVEL SWITCH CONFIGURATOR
System-level (not just card level) I/O can be logically named such that an entire path consisting of multiple relays can be connected with a single function call. On-board intelligence ensures that there are no conficts with shared resources. With the EXI 200 family there is now need for expensive switch configurator utilities.
${ }^{\circ}$ \qquad

A software interface for each switch module
with no system-level knowledge increases
A software inferface for each switch modue
with no system-level knowledge increases
coding effort.

$\stackrel{\rightharpoonup}{r}$

CONFIDENCE CHECKING
Internal feedback provides assurance of relay closure
extensive triggering
Extensive hardware and LAN-based handshaking with other system devices increases test throughput by limiting communication with a host PC.

AUTOMATIC SCANNING
Predefined channel lists can be stored on-board to simplify programming setup and reduce test execution time

SAFETY INTERRUPT

This failsafe feature forces all relays to a default state in the event of a fault condition. This allows hazardous voltages to be automatically removed from the interface panels.
programmable timing delay
Delays can be programmed into the modules to account for the settling of other system devices. When used with triggers and scan lists, a highly deterministic measurement system can be easily configured.

relay health monitoring
A relay odometer keeps track of the number of times a relay has been actuated and can be used to predict routine maintenance. Switch self-test is supported on select switch instruments and tracks path resistance across relays to monitor relay health

Connectors and Cabling

protecting signal integrity end-to-end
The performance of a switch system goes beyond just the relays and the switch card PCB. Everything in the signal path, including the cabling and connectors from the DUT and to the measurement instruments, can add noise and degrade the signal.

VTI optimizes the system-level performance by providing easy to use connectivity options that minimize signal loss.

CRIMP/POKE SIMPLIFIES CABLE CONSTRUCTION INCREASES DURABILITY

WIRES TERMINATE DIRECTIY INTO CONNECTOR, MAXIMIZING PERFORMANCE 22 AWG WIRE ALLOWS FOR 2 A CARRY INCREASED PIN SEPARATION EXTENDS VOLtAGE RATING TO 300 V

TYPICAL PC HIGH-DENSITY CONNECTOR

PC BOARD REQUIRED FOR SUCCESSFUL termination

NOT RECOMMENDED TO BE BULLT BY END USER ADDITIONAL CONNECTION POINT INCREASES insertion loss and adds another point of FAILURE

MAXIMUM 28 AWG WIRE RESTRICTS CURRENT CARRYING CAPABILITY TO 1 A CARRY

MINIMAL PIN SEPARATION LIMITS SWITCHED Voltage to 100 V

CONNECTORS AND ACCESSORIES

For each product in the EX1200 series, VTI Instruments offers a range of connectivity options that give users different options to interface to the instruments. There are four basic types of connectivity options:

discrete accessories PRE-ASSEMBLED CABLES terminal blocks INTERFACE TEST ADAPTERS
discrete accessories

VTI Instruments offers discrete components for all its connectors that allow users to build their own cable assemblies. This includes:

mating connectors
STRAIN RELIEF ACCESSORIES
CRIMP TOOLS
CRIMP PINS
teflon/pvc coated wires
insertion and extraction tools
hoods/COVERS
NYLON SHROUDS
pre-Assembled cables

VTI Instruments offers fully assembled cables that have mating connectors on one end and loose wires on the other end. Different options for cable length are available for many of the connectors.

Interface test adapters
Interface test adapters are used in automated test stations to interface between test instruments in the test rack and the device under test. VTI offers pre-configured mainframes with interface receivers and all associated cabling and wiring. Please refer to VTI's creatEX series data sheets.

Integrated 18-sIot PXI Express/EX1206A mainframe with pull-through receiver Integrated 18 slot PXI Express/Ex1208A mainframe, with cabled receiver

PXI EXPRESS SWITCHING
For applications where the channel counts for signal switching are not large, VTI offer the SMX series - a broad range of "precision instrumentation grade" switch modules on the PXIe platform

The SMX series is an extension to the EX1200 series, and can be controlled using the same instrument drivers. This allows smaller systems within PXI to be upgraded, or larger systems to be downsized very easily.

Unlike traditional PXI switch modules available in the market that pack relays onto cards to maximize density while ignoring performance, SMX series is designed with VTI's core phillosophy of high-density without compromising on performance.

- Best-in-class signal switching performance on PXI/PXIe form factor
- PXIe as opposed to PXI - mitigates obsolescence and is based on faster, newer, and forward looking instrumentation plafform
- Relay health monitoring and self-test within matrix cards
- Software benefits - path level switching, confidence checking, and safety interrupts

PXI EXPRESS SWITCH MODULES

SMX-3276	76 channel, dual (1x38) 2-wire, 300V/2A multiplexer
SMX-4410	160 crosppoint, four (4x10), 2 -wire, 300V/2A matrix
SMX-2002	12-channel, 16A, Form C (SPDT) switch
SMX-5001	80-channel, 2A, Form A (SPST) switch
SMX-6301	Four SP4T multiplexer tree, 3 GHz
SMX-7X00	DC to 26.5 GHz , microwave switch carrier and relay driver

EX1 200 Series Quick Reference

MAINFRAMES

Model	Slots	Note	Size	LAN Speaificaion	Backplane Extension Lines
EX1202	2		Half Rack, 10	LXI 10/100T	5
EX1262	2	With 6.5 digit DMM	Half Rack, 10	LXI 10/100T	5
EX1206A	6		Full Rack, 10	LXI 10/100T	5
Ex1208A	16		Full Rack, 3U	LXI 10/100T	5
EX1214-ICA	14	6 U slots with integrated mass interconnect receiver	Full Rack, 8U	LXI 10/100T	6
SWITCHES					
Model	Channels	Configuration	Switched V/A	Switched Power (max)	$\begin{aligned} & \text { Bandwidth } \\ & (-3 \mathrm{~dB}) \end{aligned}$
discrete					
Ex1200-2001	20	SPST	$250 \mathrm{VAC} / 300 \mathrm{VDC}, 16 \mathrm{~A}$	$480 \mathrm{~W}, 4000 \mathrm{VA}$	40 MHz
EX1200-2002	12	SPDT	$250 \mathrm{VAC} / 300 \mathrm{VDC}, 16 \mathrm{~A}$	$480 \mathrm{~W}, 4000 \mathrm{VA}$	40 MHz
Ex1200-5001	80	SPST	$300 \mathrm{~V}, 2 \mathrm{~A}$	$60 \mathrm{~W}, 125 \mathrm{VA}$	80 MHz
Ex1200-5002	32	SPDT	$300 \mathrm{~V}, 2 \mathrm{~A}$	$60 \mathrm{~W}, 125 \mathrm{VA}$	40 MHz
Ex1200-5004	32	SPDT	$250 \mathrm{VAC} / 110 \mathrm{VDC}, 5 \mathrm{~A}$	$150 \mathrm{~W}, 1250 \mathrm{VA}$	40 MHz
EX1200-5006	40	SPST	$300 \mathrm{~V}, 2 \mathrm{~A}$	$60 \mathrm{~W}, 125 \mathrm{VA}$	80 MHz
EX1200-5007	12	SPDT	$300 \mathrm{~V}, 2 \mathrm{~A}$	$60 \mathrm{~W}, 125 \mathrm{VA}$	80 MHz
multiplexer					
Ex1200-2007A	48	2x (1x24) 1-wire, $2 \times(1 \times 12) 2$-wire	1000 VDC/700 VAC, 2 A	$25 \mathrm{~W}, 25 \mathrm{VA}$	60 MHz
Ex1200-2008H	30	$3 \times(1 \times 10)$-wire	1000 VDC/700 VAC, 2 A	$25 \mathrm{~W}, 25 \mathrm{VA}$	60 MHz
EX1200-2087	8	Mux; $2 \times(1 \times 2) 2$-wire	$1000 \mathrm{~V} / 1 \mathrm{~A}$	$25 \mathrm{~W} / 25 \mathrm{VA}$	400 kHz
Ex1200-3001	128	$8 \mathrm{x}(1 \times 16) 1$-wire, $8 \mathrm{8x}(1 \times 8)$ 2-wire, $4 \mathrm{x}(1 \times 8)$ 4-wire	$300 \mathrm{~V}, 2 \mathrm{~A}$	$60 \mathrm{~W}, 125 \mathrm{VA}$	50 MHz
EX1200-3048	48	$2 \times(1 \times 24) 2$-wire, (1x24) 4 -wire plus 2×3 A channels	$300 \mathrm{~V}, 2 \mathrm{~A}$	$60 \mathrm{~W}, 125 \mathrm{VA}$	35 MHz
Ex1200-3048S	48	$2 \times(1 \times 24) 2$-wire, (1x24) 4-wire FET mux	$250 \mathrm{~V}, 0.2 \mathrm{~A}$	$6 \mathrm{~W}, 4.2 \mathrm{VA}$	10 MHz
Ex1200-3072	72	$2 \times$ (1×36) 2 -wire, (1x36) 4 -wire	$300 \mathrm{~V}, 2 \mathrm{~A}$	$60 \mathrm{~W}, 125 \mathrm{VA}$	40 MHz
EX1200-3096	96	$2 \times(1 \times 48) 2$-wire, (1x48) 4 -wire	$240 \mathrm{VAC} / 120 \mathrm{VDC}, 1 \mathrm{~A}$	$30 \mathrm{~W}, 37.5 \mathrm{VA}$	20 MHz
Ex1200-3164	64	16x (1x4) 2 -wire, 8x (1x4) 4-wire	$300 \mathrm{~V}, 2 \mathrm{~A}$	$60 \mathrm{~W}, 125 \mathrm{VA}$	45 MHz
MATRIX					
Ex1200-4003	128	2x (4x16) 2 -wire	$300 \mathrm{VAC} / 300 \mathrm{VDC}, 2 \mathrm{~A}$	$60 \mathrm{~W}, 62.5 \mathrm{VA}$	45 MHz
Ex1200-4128	512	(4x128) 1-wire	$250 \mathrm{VAC} / 220 \mathrm{VDC}, 1 \mathrm{~A}$	60 W	10 MHz
EX1200-4264	128	2x (2x32) 2 -wire	$300 \mathrm{VAC} / 300 \mathrm{VDC}, 2 \mathrm{~A}$	$60 \mathrm{~W}, 62.5 \mathrm{VA}$	45 MHz

EX1200 Series Quick Reference

SWITCHES

Model	Channels Co	Configuration	Switched V/A	Switched Power (max)	Bandwidth (-3 dB)
RF					
Ex1200-6101	40 10x	10x SP4T	$250 \mathrm{VAC} / 220 \mathrm{vDC}, 2 \mathrm{~A}$	50 W 62.5 VA	1.3 GHz
Ex1200-6111	20 5x	$5 \times$ SP4T	$250 \mathrm{vaC} / 220 \mathrm{VDC}, 2 \mathrm{~A}$	50 W 62.5 VA	1.3 GHz
EX1200-6102	17 SP	SPDT	$250 \mathrm{VAC} / 220 \mathrm{VDC}, 2 \mathrm{~A}$	50 W 62.5 vA	1.3 GHz
Ex1200-6216	32 2x	$2 \times(1 \times 16)$	$250 \mathrm{vaC} / 220 \mathrm{vDC}, 2 \mathrm{~A}$	50 W 62.5 VA	1 GHz
Ex1200-6216HV	32 2x	$2 \times(1 \times 16)$	$500 \mathrm{~V}, 2 \mathrm{~A}$	10 w	250 MHz
Ex1200-6301	16 4x	4× SP4T	$250 \mathrm{vDC} / 220 \mathrm{VAC}, 2 \mathrm{~A}$	$60 \mathrm{~W}, 62.5 \mathrm{VA}$	3 GHz
Ex1200-6301T	16 4x	4xSP4T terminated	$250 \mathrm{VDC} / 220 \mathrm{VAC}, 2 \mathrm{~A}$	60 W 62.5 va	3 GHz
EX1200-7100	3 banks DC	DC-26.5 GHz switch carrier	$30 \mathrm{~V} / 0.5 \mathrm{~A}$	40 w	26.5 GHz
EX1200-ICA SWITCHES					
Model	Channels	Is Configuration	Switched V/A	Switched Power (max)	Bandwidth (-3 dB)
EX1200-20111CA	20	12 SPDT 5 SP4T, 2 Dual Ganged SPDT, 1 SPDT	$115 \mathrm{VAC} / 28 \mathrm{VDC}, 12 \mathrm{~A}$ $115 \mathrm{VAC} / 28 \mathrm{VDC}, 25 \mathrm{~A}$	300 W 700 W	1 kHz
EX1200-61001CA	14	11 SP4T, 3 SPDT	$30 \mathrm{~V}, 0.5 \mathrm{~A}$	10 w	1 GHz
EX1200-51111CA	56	21 SP4T, 35 SPDT	$220 \mathrm{VDC} / 250 \mathrm{VAC}, 2 \mathrm{~A}$	$60 \mathrm{~W}, 125 \mathrm{VA}$	20 MHz
EX1200-44641CA	64	64 channel 4 -pole hybrid star matrix	$30 \mathrm{~V}, 0.5 \mathrm{~A}$	10w	500 MHz

Model	Channels	Sample Rate	Memory	lout max (Sink)	Vout max
Ex1200--7500	8×8-bit ports	2 MHz	2 MB	$<300 \mathrm{~mA}$	60 V

COUNTER/MULTIFUNCTION

Model	Channels	Sample Rate	Memory	Output	Min Pulse Widith
EX1200-1538	8 counter	1 MHz	256 kreading	NA	50 ns
	16 DIO	Static	NA	TL	NA
	2 bipolar DAC	Static	NA	$\pm 10 \mathrm{~V}$	NA

DMMs						
Model	Mainframe	Digitis (Min/Max)	Functions	Max V/I	Max Frequency (ACV)	Max Reading Rate
EX1200-2165	EX1206A	$3.5 / 6.5$	ACV, DCV, DCI, ACl, $2 / 4$ wire RES, FREQ, TEMP	$300 \mathrm{~V} / 3 \mathrm{~A}$	1.5 MHz	$2,000 / \mathrm{s}$
EX1200-2365	EX1208A	$3.5 / 6.5$	ACV, DCV, DCI, ACI, $2 / 4$ wire RES, FREQ, TEMP	$300 \mathrm{~V} / 3 \mathrm{~A}$	1.5 MHz	$2,000 / \mathrm{s}$

EX1 200 Series Quick Reference

Model	Channels	Voltage/Curent Range	Sample Rate	Max Isolation	Memory
Ex1200-3604	$4 \mathrm{~V} / 16$ bit	$\pm 1 / 2 / 5 / 10 / 20 \mathrm{~V}, \pm 20 \mathrm{~mA}$	$500 \mathrm{kSa} / \mathrm{s}$	$200 \mathrm{VDC} / 200 \mathrm{VAC}$ peak	1 Msample
EX1200-3608	$8 \mathrm{VI}, 16 \mathrm{bit}$	$\pm 1 / 2 / 5 / 10 / 20 \mathrm{~V}, \pm 20 \mathrm{~mA}$	$500 \mathrm{kSa} / \mathrm{s}$	200 VDC/200 VAC peak	1 Msample
COMPARATOR/EDGE DETECTOR					
Model	Channels	Modes	Voltage Range	Min Pulse Widith	Memory
Ex1200-7416	$16 \mathrm{DE} / \mathrm{SE}$	Edge detect, Window, Pulse	$\pm 10 \mathrm{~V} / 100 \mathrm{~V}$	1 нs	128k events
programmable load					
Model	Channels	Range		Switched V/A	Switched Power
EX1200-7600	1	$0.5-1,499,999 \Omega$ at 0.1 ת	crements	$200 \mathrm{~V} / 0.5 \mathrm{~A}$	5 W

RTD SIMULATOR

Model	Channels	Accuracy	Range	RTD Types
EX1200-7008	8	$\pm 0.1^{\circ} \mathrm{C}$	$4 \Omega-6.5 \mathrm{k} \Omega$	Pt-100, Pt-200, Pt-500, Pt-1000, Cu-100, Ni-100, Ni-120

BREADBOARD		
Model	Type	Connectors
EX1200--7000	Prototyping	$44 \mathrm{p}, 104 \mathrm{p}, 160 \mathrm{p}$
TERMINAL BLOCKS*		
Model		
EX1200-TB44	Connector compatibility	
EX1200-TB104	44-pin HD D-sub	
EX1200-TB160	104-pin HD D-sub	
EX1200-TB200	160-pin DIN	
EX1200-TBR	200-pin HD SCSI	

*EX1200 Data Sheet for more info

EX1200 Mainframe Specifications

IU MAINFRAMES			
Model	Desaription	Dimensions	Weight
EX1202	Two standard plug-in modul s slots	Half rack 1U mainframe ($20.25^{\prime \prime} \mathrm{D}, 8.61^{\prime \prime} \mathrm{W}, 1.75^{\prime \prime} \mathrm{H}$)	$4.9 \mathrm{lbs}(2.3 \mathrm{~kg})$
Ex1262	Two standard plug-in module slots plus 6.5 digit DMM	Half rack 10 mainframe ($20.25^{\prime \prime} \mathrm{D}, 8.64^{\prime \prime} \mathrm{W} 1.75^{\prime \prime} \mathrm{H}$)	$5.3 \mathrm{lbs}(2.4 \mathrm{~kg})$
EX1206A	Six standard plug-in module slots (optional 6.5 digit DMM)	Full rack 1U mainframe ($17.17^{\prime \prime} \mathrm{D}, 17.27^{\prime \prime} \mathrm{W}, 1.75^{\prime \prime} \mathrm{H}$)	$7.1 \mathrm{lbs}(3.2 \mathrm{~kg})$
3 M MAINFRAMES			
Model	Description	Dimensions	Weight
Ex1208A	Sixteen standard plug-in module slots (optional 6.5 digit DMM)	Full rack 3U mainframe (17.65" $\left.\mathrm{D}, 16.72^{\prime \prime} \mathrm{W}, 1.75^{\prime \prime} \mathrm{H}\right)$	16.2 lbs (7.4 kg)
8 C MAINFRAMES			
Model	Description	Dimensions	Weight
EX1214-ICA	Fourteen 6U high-density slots	Full rack 8u mainframe (23.5" $\left.\mathrm{D}, 23.9^{\prime \prime} \mathrm{W}, 14^{\prime \prime} \mathrm{H}\right)$	$57.5 \mathrm{lbs}(26.1 \mathrm{~kg}$

General Specifications
ENVIRONMENTAL SPECIFICATIONS
operating temperature
OPERAIING Altitude
OPERATING HUMIDITY
STORAGE TEMPERATURE
storage altiude
storage humidity
CLOCK SPECIFICATIONS
Clock oscillator accuracy
synchronization accuracy
tIMESTAMP
ACCURAC
RESOLUTION
Xi supported extensions
LXI WTB, LXI Event Log, LXI Event Messaging, LXI IEEE 1588 Clock Synchronization, LXI TI Timestamped Data

EX1 200-21 65 | 2365 DMMs

VERVIEW

- Modular 6.5 digit DMMs for the EX1200 mainframes
- Tightly integrated into mainframes, allowing high-speed, synchronized scanning measurements without the need for external cabling
- Input can be routed directly to the DMM or through an internal analog bus on the backplane.
- Super fast scanning with no processor intervention required
- Scanning configuration can be saved in the DMM's non-volatile memory allowing quick recall of saved states
- Integrating ADC for with adjustable integration time depending on the level of accuracy required.
- "True RMS" AC readings
- Frequency and temperature measurements

[^0]DMM Specifications 6.5 Digit DMM

General Specifications
SYSTEM SPEED
FUNCTION CHANGE
DCV/DCI
4 -W resistance ($100 \Omega, 1 \mathrm{k} \Omega)$
2-W resistance (<1 M Ω)
ACV
ACl (0.01 A and 0.1 A)
range change
4 -W resistance (100 $\Omega, 1 \mathrm{ko})$
2 -W resistance (<1 M Ω
$\mathrm{ACV}(0.01 \mathrm{~V}$ to 100 V$)$
ACl (0.01 A A and
-RANGE TII
4-W resistance ($100 \Omega, 100 \mathrm{k}$)
W resistance (100Ω, $100 \mathrm{k} \Omega$)
2-W resistance (100Ω, 100
ACV (0.01 V to 100 V)
ACV (0.01 V to 100 V)
ACl $(0.01 \mathrm{~A}$ and 0.1 A$)$
max reading rate
max INTERNAL TRIGGER RATE
MAX. EXTERNAL TRIGGER RATE TO MEMORY
$9 / \mathrm{s}$
$9 / \mathrm{s}$
$1 / \mathrm{s}$
$0.4 / \mathrm{s}$ sigh filter
$0.25 / \mathrm{s}$, high filter
$300 / \mathrm{s}$
$300 / \mathrm{s}$
$2 / \mathrm{s}$
$<1.25 / \mathrm{s}$, high filler
$<0.2 / \mathrm{s}$, high filter
$<30 \mathrm{~ms}$
$<60 \mathrm{~ms}$
$<3.0 \mathrm{~s}$
$<2.0 \mathrm{~s}$ s high filter
$<4.0 \mathrm{~s}$, high filer
$2.000 / \mathrm{s}$
$2.000 / \mathrm{s}$
$2.000 / \mathrm{s}$

Range	Input Resistance	Resolution			
	6.5 digit	5.5 digit	4.5 digit	Accuracy	
100 mV	$10 \mathrm{G} \Omega / 10 \mathrm{M} \Omega$	$0.01 \mu \mathrm{~V}$	$1 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$	0.0150%
IV	$10 \mathrm{G} \Omega / 10 \mathrm{M} \Omega$	$1 \mu \mathrm{LV}$	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	0.0060%
10 V	$10 \mathrm{G} \Omega / 10 \mathrm{M} \Omega$	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	1 mV	0.0035%
100 V	$10 \mathrm{M} \Omega$	$100 \mu \mathrm{~V}$	1 mV	10 mV	0.0050%
300 V	$10 \mathrm{M} \Omega$	$100 \mu \mathrm{~V}$	1 mV	10 mV	0.0055%

DMM Specifications

DMM Specifications 6.5 Digit DMM

General Specifications

Range	Resolution			Accuracy		
	6.5 digit	5.5 digit	4.5 digit	6.5 digit	5.5 digit	4.5 digit
100Ω	$100 \mu \Omega$	1 m ת	$10 \mathrm{~m} \Omega$	0.1040\%	0.0150\%	0.0160\%
$1 \mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	$10 \mathrm{~m} \Omega$	$100 \mathrm{~m} \Omega$	0.0100\%	0.0100\%	0.0150\%
$3 \mathrm{k} \Omega$	$10 \mathrm{~m} \Omega$	$100 \mathrm{~m} \Omega$	1Ω	0.0100\%	0.0110\%	0.0150\%
$10 \mathrm{k} \Omega$	$10 \mathrm{~m} \Omega$	$100 \mathrm{~m} \Omega$	1Ω	0.0100\%	0.0110\%	0.0150\%
$100 \mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	1Ω	10Ω	0.0100\%	0.0100\%	0.0150\%

FREQUENCY		Ofifset PPM			
Range	Frequency Range	Accuracy	6.5 digit		


```
    J -200 㐌 1200 }\mp@subsup{}{}{\circ}\textrm{C}\quad\pm0.25\mp@subsup{}{}{\circ}\textrm{C}\quad\pm0.2\mp@subsup{0}{}{\circ}\textrm{C
```



```
T -200 C C 400 }\mp@subsup{}{}{\circ}\textrm{C
E - -200 C C 900 }\mp@subsup{}{}{\circ}\textrm{C}\quad\pm0.25\mp@subsup{}{}{\circ}\textrm{C}\quad\pm0.20\mp@subsup{}{}{\circ}\textrm{C}=\pm0.2\mp@subsup{0}{}{\circ}\textrm{C
S - 50 ` C 1768 员 - }\quad\pm1.00\mp@subsup{}{}{\circ}\textrm{C
```


Range	Resolution			Accuracy		
	6.5 digit	5.5 digit	4.5 digit	6.5 digit	5.5 digit	4.5 digit
100Ω	100 ¢	1 m ת	$10 \mathrm{~m} \Omega$	0.1000\%	0.1500\%	0.1500\%
$1 \mathrm{k} \Omega$	1 m ,	$10 \mathrm{~m} \Omega$	$100 \mathrm{~m} \Omega$	0.0500\%	0.0550\%	0.1000\%
$3 \mathrm{k} \Omega$	$10 \mathrm{~m} \Omega$	$100 \mathrm{~m} \Omega$	1Ω	0.0200\%	0.0250\%	0.0400\%
$10 \mathrm{k} \Omega$	$10 \mathrm{~m} \Omega$	$100 \mathrm{~m} \Omega$	1Ω	0.0100\%	0.0110\%	0.0250\%
$100 \mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	1Ω	10Ω	0.0100\%	0.0100\%	0.0180\%
$1 \mathrm{M} \Omega$	1Ω	10Ω	100Ω	0.0250\%	0.0260\%	0.0270\%
$10 \mathrm{M} \Omega$	100Ω	100Ω	1000Ω	0.0550\%	0.1000\%	0.1200\%
$100 \mathrm{M} \Omega$	100Ω	1000Ω	10000Ω	0.1200\%	0.1250\%	0.1300\%

EX1 200-1538

Multifunction Counter, DAQ, and DIO

APPLICATIONS
Single frequency measurement range from 0.05 Hz to 1 MHz

Tooth wheel RPM measurement
Measure position and speed from quadrature encoder signal

Wide range of measurement
functions makes this ideal for both electronic functional
test and data acquisition

General Specifications
frequency counter inputs
NUMBER OF CHANNELS
dialog input signal range
COMMON MODE INPUT
sensitivity
THRESHOLD AND HYSTERESIS
signal frequency range
3Hz-1 MHz in AC coupling mode main time base clock
time base clock stablity
COUNTERTYPE
50 ns on digital channel
MIIIMUM DETECTABLE PULSE
RPM MEASUREMENT RANE
sample data correlation
ON-BOARD MEMORY
averaging methods
APERTURE TIME WINDOW

FEATURES

- 8 frequency counter channels, 16 isolated digital I/O 2 isolated DAC channels per card
- Highly stable 50 MHz , TCXO base clock along with 32 -bit counter for frequency measurement
- Counter channel accepts both analog and digital inputs with $\pm 48 \mathrm{~V}$ differential input range eliminates need for signal conditioning in most applications
- Programmable hysteresis and threshold levels
- Isolated digital
- Precision isolated 16-bit current or voltage source

8 (analog/digital)

$\pi \mathrm{L}$
+48 V
250 V peak
$\pm 500 \mathrm{mv}$
Programmable, 1 mV step
$0.05 \mathrm{~Hz}-1 \mathrm{MHz}$ in DC coupling mode
50 MHz
32-bit, reciprocal counting type
600 ns on analog channel
RRPM to 90,000 RPM
EEEE 1588 timestamp
255,000 reading
Moving average and simple average
1 ms to 30 s (1 ms programming steps)

General Specifications
FREQUENCY/C
mAXIMUM DATA
SAMPLING SPEED
trigeering
QUADRATURE MEASUREMENT
DIGITAL INPUT/OUTP
NUMBER OF CHANNELS
NUMBER OF CHANNELS
DIO INPUT SIGNAL LevEL
Logical high
logical low
dio isolation
dIO ISOLATION
OUTPUT SIGNAL COMPATIBLITY
UPDATE CONTROL
UPDATE CONTROL
number of channels
OUTPUT TYPE
OUTPUT MODE
voltage mode range
CURRENT MODE RANGE
OUTPUT RESOLUTION
ISOLATON
PROTECTION
CONNECTOR TYP

EX1200-7538

Multifunction Counter, DAQ, and DIO
.000.000 samples/s (into on-board buffer)
Software, immediate, Ex1200-based LXI triggers
Two channels to be paired for each encoder input
16
2.5 V to 60
$<2.5 \mathrm{~V}$
Channel-to-channel
Optically isolated solid state switch
50 mA sink/source, up to 60 V (AC/DC
Software paced

Constant voltage or constant current
Static mode or dynamic mode (frequency to voltage/current conversion)
10 V , up to 20 mA per chann
20 mA , drive up to 250Ω load
${ }_{16 \text {-bit }}^{ \pm 2}$
Channel-to-channel, galvanic
pen and short circuil for short duration
104-pin HD D-sub

EX1200 SERIES

EX1 200-2001 | 2002

High Power Switch Modules

APPLICATIONS FEATURES

High current/high power switching
AC line power switching
Switching AC or DC power supplies
Driving relays for industrial machine Solenoid switching
Automotive engine control

General Specifications
configuration

Ex1200-2001 EX1200-2002

maximum swiching voltage
MAXIMUM SWICHING CURRENT
MAXIMUM SWTCHING POWER
rated switch operations
mechanca
ELECTRICAL
SwITCHING TIME
Path resitance
INSULATION RESITTANCE
bandwidth
CONNECTOR TYPE

- Failsafe in their default state. This protects the test object from damage if a fault occurs.

- Switch up to 16 A current - highest in its class
- Large switching capacity in a small footprint
- High breakdown voltage ($1,000 \mathrm{~V}$ rms between open contacts)
$(20) \times$ SPST
(12) \times SPDT
$(20) \times$ SPST
(12) \times SPDT
$250 \mathrm{VAC}, 300 \mathrm{VDC}$
16A
480 W .4000 VA per channel
1×10^{7}
1×10^{5} at full load
$<10 \mathrm{~ms}$
$<100 \mathrm{~m} \Omega$
$>1 \times 10^{9} \Omega$
40 MHz
41 -pin

EX1200-3096

EX1200-3608 | 3604

Analog Output
waveformgeneration
$\pm 20 \mathrm{~V},+10 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 2 \mathrm{~V}$ and $\pm 1 \mathrm{~V}$ output ranges
$20 \mathrm{~mA}, \pm 10 \mathrm{~mA}$, and $\pm 5 \mathrm{~mA}$.
output ranges
Sensor simulation
Static output
General Specifications
RESOLUTION
time domain
SETING TIM
RISE TME
slew rate
BANDWIDTH
PHASE MATCHING
voltage mode
BIPOLAR
UNIPOLAR
autoranging
MAXIMUM OUTPUT
output current
CURRENT PROTECTION
dCV accuracy
isolation

features

```
- \(4(-3604)\) or \(8(-3608)\) independent, isolated. 10 -bit D/A converter
- Isolated outputs can be combined in series to extend range to 160 V or in parallel to achieve 160 mA
- Extensive triggering capability
- Synchronize level changes with input measurements to facilitate test sequencing
- Sense lines for every channel to compensate for cable
- Voltage or current source
```

16-bits monotonic
us to 0.1% of specified value
<800 ns
50 kHz
< 100 ns when all channels are running
synchronized on the internal clock
$\pm 20 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 2 \mathrm{~V}$ and $\pm 1 \mathrm{~V}$
40 V
Supported
160 V when tied in series
$\pm 20 \mathrm{~mA}$
Current limitation at 50 mA and short circcuit
rotection
0.050% of setting $\pm 0.305 \mathrm{mV}$ @ 1 V range 0.050% of setting $\pm 7.324 \mathrm{mV}$) @ 40V range
200 V

EX1200 SERIES

EX1200-3608 | 3604
Analog Output

General Specifications
current mode
ranges
maximum output
COMPLANCE VOLtage

AWG SPECIFICATIONS
update rate
PROGRAMMABLE
maximum
waveform size
modes
OUTPUT MODES
operation modes

STANDARD WAVEFORMS

CONNECTORTYPE
$\pm 20 \mathrm{~mA}, \pm 10 \mathrm{~mA}$, and $\pm 5 \mathrm{~mA}$
160 mA
20 V

20 ns steps
$500 \mathrm{kSa} / \mathrm{s}$
4 Sa to 2,097, 100 Sa

Standard, arbitrary

waveform, arbitrary source
Continuous, burst
Sequenced, single step
Sine, ramp, triangle, square with
independently configurable, initiol phase,
burst mode, and duty cycle
44 -pin

APPLICATIONS

Applications where multiple test instrumentsneed to be connected to multiple test points.
Semiconductor and PCB test
Functional/production tes

General Specifications
configuration

Ex1200-4003

Ex1200-4264
MAXIMUM SWITCHING VOLtage
maximum switching current
MAXIMUM SWITCHING POWER
rated switch operations
MECHANICAL
ELECTRICAL
SWITCHING TIME
Path resitance
INSULATION RESISTANCE
BANDWIDTH
CROSSTALK @ 1 MHz
4003
4264
CONNECTORTYPE

EX1 200-4003 | 4264

300 V/2 A Matrices

feature

- High density programmatically reconfigurable matrices
- Switch signals up to $300 \mathrm{VAC} / 300 \mathrm{VDC}$ and 2 A .
- Best in class switching performance - 45 MHz bandwidth
- Extensive signal shielding to preserve signal integrity
- Backplane connectivity on EX1200-4264 allows internal scanning measurements

Dual 4×16 (2 -wire
Dual 2×32 (2-wire)
$300 \mathrm{VAC} / 300 \mathrm{VDC}$
2 A
$60 \mathrm{~W}, 62.5 \mathrm{VA}$ per channel
1×10^{8}
1×10^{5} at full load
$<5 \mathrm{~ms}$
$<500 \mathrm{~m} \Omega$
$>1 \times 10^{9} \Omega$
45 MHz
<-55 dB
$<-70 \mathrm{~dB}$
104-pin

EX1200 SERIES

EX1200-4128

General Specifications

coniouraton

MAXIMUM SWitching voltage
MAXIMUM SWITCHING CURRENT MAXIMUM SWITCHING POWER
rated switch operations
mechanical
ELECTRICAL
SWITCHING TIME
PATH RESIITANCE
InsuLation resistance
BANDWIDTH
CONNECTORTYPE

EATURES

- Ultra high-density 4×128 1-wire matrix
- Switch up to $250 \mathrm{VAC} / 220 \mathrm{VDC}$, highest at its density in its class
- Connect rows to internal analog bus to construct larger matrices without external cabling
- Stub breaking relays reduces antenna effect on long open paths and increases switching performance

Can be combined with external wiring to form complex switch configurations

Functional/production test

EX1 200-5001 | 5002 | 5006 | 5007

General Purpose Switch
eatures

- General purpose switching up to $300 \mathrm{~V} / 2 \mathrm{~A}$
- Easy to use end-to-end path level switching for simplified programming
- Best bandwidth and crosstalk performance in its class
$\mathrm{CH}_{-} 1 \mathrm{COM} \because \square \mathrm{O}-\mathrm{CH}-1 \mathrm{NO}$

EX1200-5001-1 OF 80 SPSTS
EX1200-5006-1 OF 40 SPSTS
$\mathrm{CH}_{-} 1 \mathrm{COM}-\mathrm{OC-}$
EX1200-5002-1 OF 32 SPDT
General Specifications
CONFIGURATION
EX1200-4003
$\times 1200-426$
maximum switching voltage
MAXIMUM SWITCHING CURRENT
MAXIMUM SWTCHING POWER
rated switch operations
MECHANICAL
Electrical
switching time
PAIH RESIIANCE

Dual 4×16 (2-wire
Dual 2×32 (2-wire)
300 VDC/ $/ 300$ VAC
2 A
$60 \mathrm{~W}, 12$
ow, 125 VA
1×10^{8}
10^{5} at V DC, 0.1 A (resistive)
$<3 \mathrm{~ms}$
300 ms

	EX1200-5001	EX1200-5002	Ex1200-5006	EX1200-5007
Bandwidth	80 MHz	40 MHz	80 MHz	80 M
Crosstak @ 1 M Hz	<-55 dB	<-55 dB	<-60 dB	<-60 dB
Connector type	$160-$ pin DIN	160 -pin DIN	104-pin DSUB	104-pin DSUB

EX1200 SERIES

EX1 200-5004

High-Density 5A Switch

APPLICATIONS	features
General purpose switching	- Switch signals up to 5 A
Switching power supplies	- Fail-safe interrupt forces relays to open in case of fault condition

General Specifications
maximum switching voltage
maximum switching Current
MAXIMUM SWITCHING POWER
RATED SWITCH OPERATIONS
mechanical
Lectrical
SWITCHING TIME
PATH RESITTANCE
insulation resistance
BANDWIDTH
CONNECTOR TYPE
$250 \mathrm{VAC}, 110 \mathrm{VDC}$
5A
$150 \mathrm{~W} / 1250 \mathrm{~V}$
1×10^{7}
5×10^{5}
$<3 \mathrm{~ms}$
$<150 \mathrm{~m} \Omega$
$>1 \times 10^{9} \Omega$
40 MHz
104 in
applications

Ideal for applications switching RF signals

Wireless device/chipset testing
Testing with high-frequency scilloscopes or spectrum analyzers

General Specifications
configuration
Ex1200-6101
Ex1200-6102
$\times 1200-611$
Ex1200-6216
Ex1200-6301
Ex1200-6301T
MAXIMUM SWITCHING VOLtage
maximum switching current
MAXIMUM SWTCCHING POWER
rated switch operations
Mechanica
SWITCHING TIME
INSULATION RESITAANCE

EX1200-6701 | 6102 | 6711
 6216 | 6301 | 6301 T pr Switches

Fature

- High-density RF switches and matrices
- 50 W switching power - highest in clas
- > 3 GHz bandwidth (6301)
- Stub breaking relays eliminate unterminated stub effect for best switching performance
$7 \times$ SPDT
$5 \times$ SP4T
Dual 1×16
Quad SP4T
Quad SP4T 50Ω self terminated
$220 \mathrm{VDC} / 250 \mathrm{VAC}$
${ }_{50} \mathrm{~W}$ W. 62.5 V
5×10^{5}
1×10^{5}
5 ms

	EX12006101/611	EX1200-6102	EX1200-6216	EX12006301/6301T
Path Resistance	<250 m	$<250 \mathrm{~m}$ \%	<500 m Ω	
Bandwith	1.3 GHz	1.2 GHz	1 GHz	3 GHz
Crosstalk	<-60 dB © 1.3 GHz	<-55 dB @1.3 GHz	<-70 dB © 1.3 GHz	<-60 dB @ 1 GHz
Isolation	<-60 dB © 1.3 GHz	<-5 dB © 1.3 GHz	<-70 dB © 1.3 GHz	<-65dB@ 1 GHz
vswr	<2.92:1® 1.3 GHz	<2.92:1® 1.3 GHz	<2.5:1 1 1.3 GHz	< 1.2:1 1 1 1 GHz
Connector type	Dual-26-pin	Dual 26 -pin	Dual 26 -pin	smb

EX1200-6101-1 OF 10 ISOLATED (1X4) TREE MUXES EX1200-6111-1 OF 5 ISOLATED (1X4) TREE MUXES

EX1200-6216-1 OF 10 ISOLATED (1X4) TREE MUXES

EX1200-6301-1 OF 4 ISOLATED (1X4) TREE MUXES * no termination resistors

EX1200-630T - I OF 4 ISOLATD (1X4) TREE MUXE

EX1200-6216HV

High-Voltage RF Switches*

Ideal for applications using high voltage probes like transient measurements on power supplie

Differential coaxial switching

General Specifications

CONFIGURATION

MAXIMUM SWITCHING VOLtAGE maximum swiching current MAXIMUM SWITCHING POWER rated switch operations SWITCHING TIME PATH RESISTANCE bandwidth CROSSTALK AT 100 MHz ISOLATION AT 100 MHz
VSWR
RELAYT
RELAY TYPE
CONNECTOR TYPE

EX1200 SERIES

EX1200-7008

Sensor Simulation

APPLICATIONS
Simulate platinum/copper/nicke or custom user defined RTD types

Programmable by temperature or resistance value

Sensor simulation
General Specifications

number of channels

range of temperature simulation resolution of temperature simulation Accuracy of temperature simulatio range of resistance simulation RESOLUTION OF RESITANCE SIMULATION CONNECTIONS
supported rid sensor trpes
PLATINUM COPPER
NICKEL
temperature scales
resistance setulig tim
exctation / input current
max diferenential voltage
max Power dissipation
DC OffSET ERROR
isolation
CONNECTOR TYPE
features

- 8-channel, 2- or 4-wire RTD simulator
- Solid state servo mechanism produces fast,
monotonic, glitch free resistance value programming
- Synchronize level changes with input measurements to facilitate test sequencing

8
As per standards (programmable per channel)
${ }^{0.11^{\circ} \mathrm{C}}$
4Ω to $500 \Omega, 40 \Omega$ to $5,500 \Omega, 100 \Omega$ to $10,000 \Omega$
$0.00125 \Omega, 0.250 \Omega, 0.500 \Omega$
2-or 4 -wire
(P+100, P P 200 , P5500, Pt1000)
(Cu10, Culoo)
(Ni100, Nil2
ITs-90
$\pm 10.5 \mathrm{~mA}$ (max) (pulsed/continuous), $10 \mathrm{~mA} @ 1000 \Omega, 1 \mathrm{~mA}$ max @ $10 \mathrm{k} \Omega$
12 V
0.1 W per channel
$<10 \mathrm{\mu V}$
300 V
44 -pin

EX1200-7416

Comparator/Event Detector/Time Stamp

Constantly monitor input for fault conditions

Detect edges, out-of-bound condilions, and measure pulse widths

Can be used as a timestamp module and as a Digital I/O
"Go/no-go" tests where device needs to perform within a certain window

Control applications where device or test needs to be shut down if a threshold is exceeded

General Specifications

number of channels

input ranges
INPUUTHRESHOLD
InPut EDGE TYPE
THRESHOLD HYSTERESII AND ACCURACY
10 V range
100 V range
input edge detection
modes
Paired
$\stackrel{\text { Pulsed }}{ }$
Debounce time
MEMORY
MEMORY
TIMESTAMP ACCURACY
Ex1200-7416
CONNECTORTYP
features

- 16-Channel analog comparator/event detector
- Programmable debounce circuitry prevents erroneous reading

10 V and 100 V input ranges

- Onboard memory stores events with 1588 timestamps
- Inputs can be masked, inverted and combined to produce interrupts

16

$\pm 10 \mathrm{~V}, \pm 100 \mathrm{~V}$
70 V with 82 mv resolution 8 -bit)
00 V with 820 mV resolution (8-bit). Programmable per channel Differential

82 mV to 82 mV
820 mV to 820 mV
Normal (rising) or inverted (falling),.Programmable per channel
Edge detect
Upper/lower bounds
postive/negative polarity
us to 1.6777216
3,960 events
500ns
AND / OR
44 -in

EX1200 SERIES

EX1200-7600

Programmable Resistor Ladder

APPLICATIONS	FEATURES
Unit under test loading	- Simulate resistance from 0.5Ω to $1.5 \mathrm{M} \Omega$
or simulation	- 0.1Ω step size
Sensor simulation	- Fault sensing over-voltage, over-current and over-temperature
crocess control	circuits protects unit from damage.
ATE calibration	Internal 5 W high-precision power resistors switched in and out using mechanical relays

General Specifications
number of channels
SWITCHING TIME
rated switch operations
Mechanical
Electrical
over temperature protection
maximum switching voltage
MAXMO SWIChing Current
voltage sensing circuit
CURRENT SENSING CIRCUIT
seting accuracy
0.5 to 60Ω
60.1 to 1,499,999 Ω

MINIMUM INCREMENT
CONNECTOR TYPE

out using mechanical relays

$<3 \mathrm{~ms}$
5×10^{6}
$\times 10^{5}$
$02^{\circ} \mathrm{C}\left(215.6^{\circ}\right.$
00 VA
0.5 A
5 W
$0: 1 \pm 1 \%$ full scale accuracy
$100: 1 \pm 1 \%$ full scale accuracy
*0.15
0.25\% of programmed value
.

APPLICATION

Simulate and receive digital data up to 2 MHz sample rate

High-current capability for control of external relays - 300 mA sink

Onboard 1 MB memory can be used for storing and generating patterns

General Snecifications
number of channels
DATA INPUT CHARACTERISTICS
Vout (high)
Vout (low)
voltage range
Internal voltage source
MODES
Immediate
Asynchronous
Pattern

Gate (Pattern Mode)
MEMORY DEPTH
Output or input enabled
Sutput and input enabled
maximum External clock rat
Pattern generation disabled pattern generation ena
DAAANPUTORTYE

EX1200-7500

Digital I/O
features

- 64 -channel, 2 MHz Digital I/O
- Each channel configurable as input or output
- Selectable output range from 3.3 V to 60 V
- Input data can be timestamped using EX1200 scan engine

64
22 Vto 60 V
$<1.5 \mathrm{~V}$ @ 300 mV
$\pm 3.3 \mathrm{~V}, \pm 5.0 \mathrm{~V}, \pm 12.0 \mathrm{~V}, \pm 24 \mathrm{~V}$
3 V up to 60 V
hputs and outputs read and
witten via sofftware control
wilten via software control
Channels are latched into memo
via external clock
Buffered pattern generation and acquisition controller by inernal on external clock
Programmable active low or high
2 MB
1 MB
,
2.5 MHz

MHz
60-pin clock, fron panel input

EX1 200-ICA Solutions

Integrated ICA and Switching Mainframe
features

- Integrated receiver and switch modules eliminate lossy cabling
- 14 high-density switch and I/O slots
- Integrated analog backplane expands measurement capability
- Matrix switching allows for flexible use of receiver I/O
- 270 V dc power option

The EX1200-ICA is an 8 U signal switching mainframe with 6 U tall plugin cards with integrated receiver modules. It is used at the core of the US Navy CASS program as the enhanced general purpose interface subsystem.

These receiver modules greatly simplify cabling and maintenance, and also improves performance by eliminating cable losses between switch system and receiver.

The EX1214-ICA has access points in the rear that can be used to interface the I/O to internal test system resources such as spectrum analyzers and RF synthesizers. It also has a removable power supply that supports AC/DC inputs with remote enable/disable.

Ex1214-ICA	14-Slot, 8 U mainframe
Ex 1200-201 IICA	12 SPDT 12 A and 5 SP4T 5 A power switch module
EX1200-61001CA	1 GHz coax switch module, 11 SP4T, 3 SPDT
EX1200-51111CA	$250 \mathrm{~V} / 2 \mathrm{~A} \mathrm{switch} \mathrm{module}$,21 SP4T, 35 SPDT

CUSTOM INTEGRATION SERVICES
VTI employs an innovative, modular approach to our standard product designs that allows us to quickly make customer-requested modifications that address specific application requirements. These 'custom' products are then documented and supported just like our standard products. This relieves our customers of the burden of managing a custom development project and the associated long-term support issues, while helping them optimize their size and overall cost.

SYSTEM-LEVEL EXPERIENCE
Our application engineering team has years of experience in integrating a wide range of instrumentation products into larger test systems. We work with customers during the project definition phase to help architect solutions that best meet the application requirements. Our expert knowledge of industry standards, such as LXI, VXI, IVI, PXI and VME, at the hardware and software level has helped test developers reduce the time to 'system readiness' in the following applications:

- data AcQuisition
- functional / Automated test
- signal switching and distribution

It is with this experience that we are able to provide our customers with a world-class selection of automated test and data acquisition solutions.

SERVICE AND SUPPORT

VTI Instruments has a worldwide sales, service, and support infrastructure, along with a staff of applications and technical sales people who have years of experience configuring and specifying test requirements. By utilizing state-of-the-art technology in all phases of product development, VTI Instruments is able to provide a level of worldwide support that is unique in the industry.

VTI is committed to preserving our customers' initial capital investment in our products through a dedicated sustaining engineering program that continuously designs out component obsolescence. This approach enables us not only to enhance products, but also to considerably extend their life and support cycles. We strive to maintain hardware and software backward compatibility with our installed base whenever possible so as not to impact our customers' existing test program sets.

VTI INSTRUMENTS
 HIGH-DENSITY SWITCHING AND DATA ACQUISITION SYSTEMS

EX1200 series

VTI Instruments Corporation World Headquarters

2031 Main Street
Irvine, CA 92614 USA
Phone: +1949 9551894

VTI Instruments Pvt. Ltd. Bangalore Instrument Division
\& ill Floors
Infantry Road
Bangalore - 560001 India
Phone: +91 8040407900

VTI Instruments Corporation Cleveland Instrument Division

5425 Warner Road, Suite 13
Valley View, OH 44125 USA

Phone: +1 2164478950

VTI Instruments Ltd. United Kingdom

4 The Paddock Lower Boddington
Northants
NN11 6YF
UK
Phone: +44 (0) 1295660008

[^0]: C voltage, AC voltage
 DC current, AC curren
 2 -wire $\Omega, 4$-wire Ω
 450 V
 3A, 250 V fuse, externally accessible

